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Abstract
Objective This study evaluated the effects of a low-intensity
electric current on tissue reorganization during experimental
orthodontic tooth movement.
Materials and methods Thirty-two animals were divided into
two groups evaluated on days 3 and 7: OTM—orthodontic
tooth movement and OTM + MC—orthodontic tooth move-
ment and microcurrent application (10 μA/5 min). The sam-
ples were processed for histological, morphometric, and
Western blotting analysis.
Results Analysis of the periodontal ligament (PL) showed a
significantly smaller number of granulocytes in the OTM +
MCgroup on day 7.The number of fibroblasts was significant-
ly higher in the OTM+MCgroup on days 3 and 7. The area of
birefringent collagen fibers was more organized in the OTM +
MC group on days 3 and 7. The number of blood vessels was
significantly higher in the OTM + MC group on day 7.
Microcurrent application significantly increased the number
of osteoclasts in the compression region of the PL. In the

OTM + MC group on day 7 of tooth movement, the expres-
sion of TGF-β1 and VEGFwas significantly reduced whereas
the expression of bFGF was increased in PL.
Conclusions Electrical stimulation enhances tissue responses,
reducing the number of granulocytes and increasing the num-
ber of fibroblasts, blood vessels, and osteoclasts and modu-
lates the expression of TGF-β1, VEFG, and bFGF.
Clinical relevance This technique is used in many areas of
medicine, but poorly explored in dentistry and orthodontics.
This treatment is cheap and non-invasive and can be applied
by own orthodontist, and it can improve the treatment with a
faster and safe tooth movement, without pain.

Keywords Microcurrent application . Low-intensity electric
current . Orthodontic toothmovement

Introduction

Orthodontic tooth movement causes resorption of alveolar
bone on the compression side and osteogenesis on the tension
side. Studies investigating the mechanisms involved in this
process are important to improve orthodontic treatment [1].

The physical and biological effects of orthodontic tooth
movement can be observed early, affecting the extracellular
matrix, cells of the alveolar bone, and periodontal ligament
(PDL) such as granulocytes, fibroblasts, osteoclasts, and oste-
oblasts. Furthermore, changes occur in the synthesis and
release of cytokines, growth factors, and chemotactic
factors [2–4].

The inflammatory responses observed at the beginning of
application of an orthodontic force are related to the release of
proinflammatory cytokines that affect bone remodeling
through the recruitment of osteoclast precursors; in addition,
these molecules promote the maturation and activation of

* Milton Santamaria-Jr
santamariajr@mailcity.com

1 Graduate Program of Orthodontics, Heminio Ometto University
Center, UNIARARAS, Dr. Maximiliano Baruto, 500,
Araras, SP 13607-339, Brazil

2 School of Dentistry, Heminio Ometto University Center,
UNIARARAS, Dr. Maximiliano Baruto, 500, Araras, SP 13607-339,
Brazil

3 Graduate Program of Biomedical Sciences, Heminio Ometto
University Center, UNIARARAS, Dr. Maximiliano Baruto, 500,
Araras, SP 13607-339, Brazil

4 Division of Periodontics, College of Dentistry, State University of
São Paulo, UNESP, Av. Eng. Francisco José Longo, 777, São José
dos Campos, SP 12245-000, Brazil

Clin Oral Invest (2017) 21:111–120
DOI 10.1007/s00784-016-1759-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s00784-016-1759-6&domain=pdf


osteoclasts [5]. An important proinflammatory cytokine is
transforming growth factor beta 1 (TGF-β1), which is abun-
dantly present in the bone matrix [6] and is normally found in
periodontal tissue where it plays a key role in tissue remodel-
ing. The expression of TGF-β1 is increased during orthodon-
tic tooth movement and this cytokine actively participates in
alveolar bone remodeling [1, 7].

Similarly, vascular endothelial growth factor (VEGF) is
involved in the remodeling of periodontal tissue and alveolar
bone, stimulating angiogenesis. During orthodontic tooth
movement, VEGF in particular mediates angiogenesis and
tissue changes in the PDL [8, 9].

Basic fibroblast growth factor (bFGF) is involved in
the proliferation of fibroblasts and endothelial cells, an-
giogenesis, macrophage chemotaxis, and osteoblast and
osteoclast differentiation and, consequently, in bone re-
construction [10–13].

The application of electric fields and continuous currents
similar to those generated physiologically by the organism can
modify cell behavior [14] and induce changes in the skin [15],
cartilage [16, 17], tendons [18, 19], and bone [20, 21].
Changes also occur in the transport of ions across cell mem-
branes, as well as in the migration of leukocytes, macro-
phages, and keratinocytes and in the proliferation of vascular
endothelial cells, osteoblasts, osteoclasts, chondrocytes, and
fibroblasts [22–24]. In vitro studies have suggested that elec-
trical stimulation affects cellular mechanisms such as ATP
production and protein synthesis, exerts antioxidant effects,
and promotes changes in blood flow and in transmembrane
transport, as well as inducing the synthesis and release of
epidermal and vascular growth factors and the expression of
their respective receptors [25].

The combination of exogenous electric currents with other
therapies has demonstrated beneficial effects in experimental
procedures [26–29]. The electric parameters to be used, such
as the intensity of the energy applied, amplitude of stimula-
tion, and frequency of application, should be adjusted consid-
ering the type of target tissue in order to obtain an adequate
biological response, since an increase in intensity and certain
frequencies of electric currents can reduce proliferation
and induce cell death [30, 31]. The local application of
exogenous electric currents combined with tooth move-
ments can accelerate orthodontic treatment [32, 33]. In
an experimental study, Hashimoto [34] investigated the
effects of microcurrent application (10 μA) on the tooth
surface of cats. The author observed that this treatment
increased bone deposi t ion and concluded that
microcurrent application combined with a mechanical
force may accelerate alveolar bone remodeling and or-
thodontic tooth movement.

Although the use of low-intensity electric currents has been
studied for a long time [21, 35–41], their acceptance in clinical
practice requires more detailed investigation of other

parameters and protocols. Within this context, it is important
to establish standard electric parameters of intensity, frequen-
cy, and time of application [42] and to investigate their effects
on the different cellular and molecular elements that modulate
tissue remodeling. Furthermore, the application of a low-
intensity electric current has attracted clinical interest since it
is a noninvasive therapeutic method that can be used as a
coadjuvant in different treatments. Other advantages
are that the method is safe, easy to use, simple, and
inexpensive [43, 44].

Therefore, the objective of the present study was to inves-
tigate tissue reorganization in an experimental model of ortho-
dontic tooth movement in Wistar rats using a new protocol of
low-intensity electric current application. The hypothesis was
that this therapy contributes to the efficacy of orthodontic
treatment.

Materials and methods

Animals

Thirty-two male Wistar rats (Rattus norvegicus), 90 days old
and weighing on average 300 g, were obtained from the
Animal Experimentation Center of Herminio Ometto
University Center, UNIARARAS. The animals were housed
in individual polycarbonate cages at a constant temperature
(23 ± 2 °C) and humidity (55 %) under a 12-h light/dark cycle
with food and water ad libitum.

The animals were randomly divided into two groups of 16
animals each: one group submitted only to orthodontic tooth
movement (OTM) and another group submitted to orthodontic
tooth movement combined with microcurrent application
(OTM + MC).

All procedures performed in the present research were in
accordance with the ethical standards of the Research Ethics
Committee of Herminio Ometto University Center (permit no.
095/2011) and with the 1964 Helsinki Declaration and its later
amendments or comparable ethical standards.

Orthodontic tooth movement

For installation of the tooth movement device, the animals
received general anesthesia consisting of the intraperitoneal
administration of xylazine hydrochloride (0.2 mg/kg) and ke-
tamine hydrochloride (1 ml/kg).

A stainless steel closed coil spring was installed between
the left upper first molar (force site) and the upper incisors
(anchorage site) according to Heller and Nanda [45], which
permitted tip forward movement of the first molar (Fig. 1a).
The coil spring was stretched from 4 to 6 mm, releasing a 0.4-
N initial force [46].
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Microcurrent application

A transcutaneous electric stimulator (Physiotonus
Microcurrent, BIOSET®, Rio Claro, Sao Paulo, Brazil) was
used for microgalvanic stimulation (continuous current of
10 μA) [21]. For daily application, two metal electrodes with
metallic spherical ends were placed in the mesiobuccal and
mesiopalatal region of the first molar applied for 5 min
(10 μA/5 min) (Fig. 1b). The device was calibrated by the
manufacturer.

Structural and morphometric analysis

Samples (n = 5 per experimental period) were collected on
days 3 and 7 of tooth movement after anesthesia and cervical
dislocation. The epithelial and muscular components sur-
rounding the maxilla were removed and fixed in 10 % form-
aldehyde in Millonig’s buffer, pH 7.4, for 48 h at room tem-
perature. The tissue samples were then demineralized in
EDTA-containing decalcifying solution for approximately
2 months. After this period, the specimens were washed in
buffer and submitted to standard procedures for embedding
in Paraplast™ (Histosec®, Merck). Transversal cross sections
(6 μm) were cut from the specimens to permit visualization of
all roots of the left upper first molar until the cervical region of
the periodontal tissue and roots were reached. The distobuccal
root was used to identify the PDL areas undergoing tension
and compression. In the tension region, the number of
fibroblasts and blood vessels (n/104 μm2) was deter-
mined by staining with toluidine blue in McIlvaine’s
buffer, pH 4.0; granulocytes were counted (n/104 μm2)
using the method of Dominici [47]. In the compression
region, the total number of osteoclasts (n/104 μm2) in
alveolar bone superface was determined by toluidine
blue staining. Three samplings of 104 μm2 were

performed for each of the five sections obtained per
animal in each group.

Using sections stained by the picrosirius-hematoxylin
method [48], the mesiobuccal root was analyzed to quantify
the content of birefringent collagen fibers (% of total area) in
the tension region. Birefringence is an indicator of the caliber
and organization of collagen fibers in tissue. For measurement
of the area of birefringent fibers, the images captured were
analyzed with a Leica DM2000 photomicroscope under po-
larized light.

All measurements were made on images obtained from the
original image documented with a 40× objective using the
Sigma Scan Pro 5.0™ program. The data were analyzed by
the Student’s t test using spreadsheets of the Excel for
Windows XP™ software.

Western blotting

The periodontal tissue (alveolar bone + PDL) of the moved
molar of the different groups (n = 3) was curetted. For protein
extraction, the samples were homogenized in a Polytron PTA
20S homogenizer (model PT 10/35; Brinkmann Instruments,
Westbury, NY, USA) operating at maximum speed for 40 s in
buffer (10 mM EDTA, 100 mM Tris base, 10 mM sodium
pyrophosphate, 100 mM sodium fluoride, 100 mM sodium
orthovanadate, 2 mM PMSF, 0.1 mg/mL aprotinin in 25 mL
deionized water; Sigma Chemical Co., St. Louis, MO, USA).
Next, 10 % Triton X-100 (10 % of the volume used per sam-
ple) was added. After 40 min, the mixture was centrifuged at
12,000 rpm for 40 min at 4 °C for removal of insoluble mate-
rial. The supernatant was collected for the measurement of
protein concentrations in the samples by the biuret
method [49] (Protal colorimetric method, Laborlab, São
Paulo, Brazil).

Fig. 1 Stainless steel spring attached to induced tooth movement (a) and
the application of electrical current stimulation (10 μA/5 min) (b) during
the experimental days 3 and 7
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Aliquots of the supernatant were treated with Laemmli
buffer containing 100 mM DTT (Sigma Chemical Co.).
Samples containing 50 μg protein were boiled for 5 min and
submitted to sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) on 10 % (VEGF, 40 kDa) and 12 %
gels (TGFβ1 and FGF-2, 25, and 24 kDa, respectively) in a
mini-gel apparatus (Mini-Protean®, Bio-Rad, Richmond, CA,
USA). The proteins were then transferred from the gel to a
nitrocellulose membrane (Hybond ECL, 0.45 μm). The mem-
branes were washed in basal solution (1 M Tris base, 5 M
NaCl, 0.005 % Tween 20, and deionized water for 2 L) and
incubated in blocking solution (basal solution in 5 % skimmed
milk power, Molico®) for 2 h. After washing in basal solution,
the membranes were incubated overnight at 4 °C with specific
antibodies against the different proteins diluted 1:200 (anti-
TGF-β1, anti-FGF-2, and anti-VEGF; Santa Cruz
Biotechnology, USA) and against β-actin diluted 1:1000
(Cell Signaling Technology). Next, the membranes were in-
cubated with the specific secondary antibodies (IgG1:HRP,



1:1000; Santa Cruz Biotechnology) for 2 h at room tempera-
ture. The reactions were developed with a chemiluminescent
kit (SuperSignal® West Pico Chemiluminescent Substrate
34080, Thermo Scientific, USA) for 2 min, and the mem-
branes were photodocumented with the Syngene G:BOX sys-
tem. Band intensity was evaluated by densitometry using the
Scion Image 4.0.3.2 software (Scion Co., USA). Statistical
analysis was performed by the Student’s t test (p < 0.05) using
spreadsheets of the Excel for Windows XP™ program.

Results

Structural and morphometric analysis

Figures 2 and 3 show the histological alterations that occurred
in the PDL of the distobuccal and mesiobuccal roots of the left
upper first molar, respectively, after orthodontic force applica-
tion alone and combined with microcurrent stimulation.
Application of an orthodontic force promotes PDL stretching
on the distal side of periodontal tissue, while it exerts com-
pression on the mesial side.

Analysis of the distobuccal root of samples of the OTM
group on day 3 showed a regular alveolar bone surface on the
tension side and an irregular surface on the compression side,
probably indicating the beginning of bone remodeling. The
periodontal space was smaller on the compression than on
the tension side. In some samples, the root surface in the
compression region was irregular, indicating the resorption
of cementum. On the other hand, no root resorption was

observed on the tension side. On day 7 of orthodontic tooth
movement, bone resorption lacunae were more evident on the
surface of the alveolar bone in the compression region.

Comparison of samples obtained from the OTM +MC and
OTM groups revealed no important structural differences at
either experimental period studied.

In morphometric analysis (Fig. 4), the number of
granulocytes in the tension side of the distobuccal root PDL
was significantly higher in samples of the OTM + MC group
on day 3 (OTM, mean 18 ± 3; OTM +MC, mean 25 ± 4) and
decreased significantly on day 7 when compared to the OTM
group (OTM, mean 28 ± 5; OTM + MC, mean 12 ± 4).

The number of fibroblasts in the tension region of the PDL
of the distobuccal root was significantly higher in animals of
the OTM + MC group on days 3 (OTM = 26 ± 5, OTM +
MC = 35 ± 4) and 7 (OTM = 30 ± 4.5, OTM + MC = 42 ± 5)
compared to that in the OTM group.

The area occupied by birefringent collagen fibers in the
tension region of the PDL of the mesiobuccal root was similar
in the two groups on days 3 (OTM = 20.5 ± 4; OTM +
MC = 23.5 ± 4.5) and 7 (OTM = 22 ± 3.5, OTM +
MC = 24 ± 5).

The number of newly formed vessels in the tension region
of the PDL of the distobuccal root did not differ between
groups on day 3 (OTM = 4.5 ± 0.8, OTM + MC = 5 ± 0.9),
while higher values were observed in the OTM + MC group
on day 7 (OTM = 5 ± 0.7, OTM + MC = 7 ± 0.6).

Analysis of the compression region of the PDL of the in-
termediate vestibular root showed a significantly larger num-
ber of osteoclasts in the OTM + MC group on days 3

Fig. 2 Cross sections of the
distobuccal root of the upper first
molar of male rats at 3 and 7 days
of induced tooth movement.OTM
animals submitted only to
orthodontic tooth movement,
OTM + MC animals submitted to
orthodontic tooth movement and
microcurrent application, F force
direction (red arrow), P pulp, D
dentin, C cementum, PDL
periodontal ligament. The
sections were stained with
toluidine blue and analyzed under
bright-field illumination. Asterisk:
alveolar bone, arrow: blood
vessels, arrowhead: fibroblasts.
Bar = 200 μm

114 Clin Oral Invest (2017) 21:111–120



(OTM = 3 ± 0.5, OTM + MC = 4 ± 0.45) and 7
(OTM = 5 ± 0.4, OTM + MC = 6 ± 0.3).

Analysis of cytokines by Western blotting

Analysis of densitometry and the expression of TGF-β1,
VEGF, and bFGF (Fig. 5) by Western blotting showed
differences in the level of these cytokines in the two
groups (OTM and OTM + MC). Densitometric analysis
o f T G F - β 1 ( O TM = 2 2 1 ± 5 0 , O TM +
MC = 248 ± 50) and VEGF (OTM = 199 ± 63, OTM
+ MC = 238 ± 52) revealed no differences in the ex-
pression of these cytokines in the two groups on day 3.
However, a significant reduction in the expression of
these cytokines TGF-β1 (OTM = 233 ± 50, OTM +
MC = 134 ± 13) and VEGF (OTM = 268 ± 9, OTM
+ MC = 116 ± 32) was observed on day 7 in animals

treated with a microcurrent. The expression of bFGF
w a s s i m i l a r i n t h e t w o g r o u p s o n d a y 3
(OTM = 59 ± 9, OTM + MC = 62 ± 5), but an increase
was observed on day 7 (OTM = 47 ± 14, OTM +
MC = 79 ± 8) in animals treated with a microcurrent.

Discussion

Inflammatory responses in periodontal connective tis-
sues are observed at the beginning of application of
these forces and are the result of the release of dif-
ferent proinflammatory cytokines that act as chemo-
tactic factors for neutrophils and macrophages and
play an important role in mineralized tissues, induc-
ing local osteoclastic effects [50, 51]. The role of
cytokines in orthodontic tooth movement has been

Fig. 3 Cross sections of the
mesiobuccal root of the upper first
molar of male rats at 3 and 7 days
of induced tooth movement.OTM
animals submitted only to
orthodontic tooth movement,
OTM + MC animals submitted to
orthodontic tooth movement and
microcurrent application, F force
direction (red arrow), P pulp, D
dentin, C cementum, PDL
periodontal ligament. The
sections were stained with
picrosirius-hematoxylin and
analyzed under bright-field
illumination and polarized light
(pol). Asterisk: alveolar bone,
arrowhead: collagen fibers of the
PDL. Bar = 200 μm
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investigated [2, 9], and studies suggest that the stim-
ulation of inflammatory cytokine expression increases
bone remodeling, favoring orthodontic tooth move-
ment. Furthermore, these molecules recruit osteoclast

precursors from the circulation and promote the mat-
uration and activation of these cells [5].

The TGF-β1 is a cytokine that plays a crucial role in the
regeneration of connective tissue and bone remodeling, with

Fig. 4 Total number of fibroblasts (a), granulocytes (b), newly formed
blood vessels (c), osteoclasts (d), and the birefringence area of collagen
fibers (e) in the periodontal ligament (PDL) of roots from maxillary first
molar of the male rats after 3 (3d) and 7 (7d) days of orthodontic tooth
movement (OTM). Experimental groups: OTM without additional

treatment, OTM + MC treatment with microcurrent (10 μA/5 min/day).
The results are reported as the mean and standard deviation of each group
and were compared by Student’s t test (p < 0.05). *Significant intergroup
difference
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significant effects on osteogenic differentiation and bone for-
mation, recruiting leukocytes and inducing the inflammatory
phase [52–54].

In the present study, the expression of TGF-β1 was slightly
increased during the early stage of orthodontic tooth move-
ment (day 3) in animals of the OTM + MC group, while a
reduction in this cytokine was observed on day 7 in this group.
Morphometric analysis of samples obtained from the
tension region of the PDL of the distobuccal root re-
vealed a significant reduction in the number of
granulocytes on day 7 in the OTM + MC group when
compared to day 3. These data suggest that microcurrent
application may have reduced the development of in-
flammation during the early stages of tooth movement
in this experimental model, favoring bone remodeling.
Inflammation is beneficial during tooth movement, but
can have destructive effects on the periodontium and
tooth structure if it is not controlled [5].

With respect to bFGF, higher expression was observed in
alveolar bone samples of the moved tooth obtained from an-
imals of the OTM + MC group on day 7 compared to the
OTM group. The bFGF is an important growth factor which
is involved in angiogenesis and plays a significant role in
chemotaxis and mitogenesis of PDL cells, accelerating the
regenerative process [2, 12, 55]. Microcurrent application pro-
moted an increase in bFGF at the two experimental periods
studied. Thus, our results suggest that this MC treatment pro-
tocol may have favored bone remodeling since it appears to
induce the proliferation of fibroblasts, as observed in our anal-
ysis. Other studies indicate that the FGF also orchestrates an-
giogenesis [56–58]. Seifi et al. [55] demonstrated the benefi-
cial effects of bFGF injection at the site of tooth movement
and concluded that this protocol may reduce the duration of
orthodontic treatment.

Fibroblasts are also present in large numbers in the PDL
and an increase in the proliferation of these cells favors the

Fig. 5 Analysis of TGF-β1 (a), VEGF (b), and bFGF (c) protein
expressions in the periodontal ligament and alveolar bone of the upper
first molar obtained from male rats at 3 and 7 days of induced tooth
movement. OTM animals submitted only to orthodontic tooth
movement, OTM + MC animals submitted to orthodontic tooth

movement and microcurrent application. In the graph, values are
expressed as the mean ± standard deviation. *p < 0.05: significant
difference compared to OTM (Student’s t test). The representative
immunoblot (IB) is shown above the graph
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deposition and organization of collagen fibers in the extracel-
lular matrix. Different studies confirm the increase in fibro-
blast proliferation in the presence of a mechanical stimulus [1,
59, 60]. In the present study, MC-treated samples exhibited
similar results in terms of the increase in bFGF expression and
in the number of fibroblasts on the tension side at the two
experimental periods studied. The same response was not ob-
served for the percentage of birefringent collagen fibers, indi-
cating that the experimental period may not have been suffi-
cient to modify the dynamics of fiber reorganization in the
PDL, as observed in previous studies using other tissues.
With respect to these parameters in particular, Campos
Ciccione et al. (2013) [16] and Zuzzi et al. (2013) [17] ob-
served positive effects of microcurrent stimulation on the total
number of fibroblasts and a consequent increase in birefrin-
gent collagen fiber content during the repair of non-articular
cartilage in young and adult Wistar rats. A study investigating
the bone repair of Wistar rat calvarial defects also showed an
increase in fibroblast proliferation in samples submitted to
microcurrent application (10 μA/5 min) [21].

In the present study, the expression of VEGF was signifi-
cantly reduced in the OTM + MC group on day 7 when com-
pared to the early stage of orthodontic tooth movement (day
3). This result suggests that microcurrent application favored
angiogenesis, since the release of VEGF is induced by cells
submitted to hypoxia, a characteristic of the early stages of
orthodontic tooth movement, and its expression decreases
with the reestablishment of tissue oxygenation [61, 62].
Furthermore, morphometric analysis demonstrated a signifi-
cant increase in the number of blood vessels during this period
in the OTM + MC group. Microcurrent stimulation is an im-
portant tool for tissue repair since it also promotes the forma-
tion of new blood vessels [25]. Mendonça et al. [21], using the
same intensity and time of electric stimulation (10 μA/5 min),
also observed an increase in the number of newly formed
vessels during the repair of calvarial bone defects in
Wistar rats.

The VEGF is also involved in the differentiation of osteo-
clasts [63]. According to Di Alberti et al. [64], VEGF partic-
ipates in tissue repair and bone remodeling in peri-implantitis
lesions by regulating the formation and migration of osteo-
clasts. In the present study, an increase in the number of oste-
oclasts was observed in samples of the OTM + MC group.
This finding indicates that this therapy increased the number
of these cells, thus favoring bone remodeling since the early
stages of orthodontic tooth movement.

Electrical stimulation has been shown to be effective in
inducing osteogenesis [65, 66]. Its cellular effects promoting
tissue repair include the attraction and stimulation of neutro-
phils, leukocytes, and fibroblasts; synthesis of collagen; and
bacteriostatic activity [41, 44].

The analysis of the parameters studied permits to conclude
that microcurrent application combined with induced tooth

movement favored tissue responses, reducing the number of
granulocytes and increasing the number of fibroblasts, blood
vessels, and osteoclasts. The cytokines and growth factors
studied (TGF-β1, VEFG, and bFGF), which play an impor-
tant role in tissue repair, were modulated favorably during
orthodontic tooth movement when combined with
microcurrent application. Further studies are needed to inves-
tigate new protocols for the identification of clinically relevant
parameters of electric current applications, since the results
obtained with this experimental model support the use of
low-intensity electric current as a coadjuvant tool in orthodon-
tic treatment.
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