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Do electrical current and laser therapies improve bone remodeling
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Abstract
Objectives Evaluate the bone remodeling during orthodontic movement with corticotomy when submitted to low-intensity
electrical stimulation application (microcurrent—MC) and low-level laser therapy (LLLT).
Material and methods One hundred and fifty Wistar rats were divided into the following 5 groups: (C) submitted to tooth
movement; (Cort) tooth movement/corticotomy; (Cort-L) tooth movement/corticotomy/laser AsGaAl 808 nm (4.96J/50s); (Cort-
Mc) tooth movement/corticotomy/microcurrent (10 μA/5 min); (Cort-L-Mc) tooth movement/corticotomy and laser/
microcurrent alternated. Inflammation, angiogenesis, and osteogenesis were evaluated in the periodontal ligament (PDL) and
alveolar bone on the 7th, 14th, and 21st days of orthodontic movement.
Results The quantification of inflammatory infiltrate, angiogenesis and expression of TGF-β1, VEGF, and collagen type I were
favorably modulated by the application of therapies such as low-level laser therapy (LLLT), MC, or both combined. However,
electrical stimulation increased fibroblasts, osteoclasts and RANK numbers, birefringent collagen fiber organization, and BMP-7
and IL-6 expression.
Conclusions Low-level laser therapy (LLLT) and MC application both improved the process of bone remodeling during ortho-
dontic treatment with corticotomy. Still, electrical current therapy promoted a more effective tooth displacement but presented
expected root resorption similar to all experimental treatments.
Clinical relevance It is important to know the effects of minimally invasive therapies on cellular and molecular elements involved
in the bone remodeling of orthodontic treatment associated with corticotomy surgery, in order to reduce the adverse effects in the
use of this technique and to establish a safer clinical routine.
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Introduction

Prolonged orthodontic treatments may promote adverse
effects, such as caries, gingival retraction, root resorption,

and alveolar bone loss [1]. Therefore, accelerating tooth
movement and shortening treatment duration have always
been a concern for patients as well for orthodontists [2].

Corticotomy associated with tooth movement may signifi-
cantly expand treatment options for skeletal discrepancies that
promote severe malocclusion usually indicated for
orthognathic surgery [3]. The investigation of cellular and
molecular changes involved in the corticotomy is important
for an adequate development of protocols that minimize the
adverse effects of this technique, such as substantial inflam-
mation, which includes pain, edema, and subsequent alveolar
bone loss [4, 5].

The use of animals in experimental models allows clinical
reproducibility in a standardized way. The in vivo research
with animal models provides relevant data on physiological
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and pathological conditions which can be useful in establish-
ing more effective clinical interventions [6].

Orthodontic forces induce responses in tooth-supporting
tissues resulting in remodeling the periodontal ligament and
alveolar bone due to angiogenesis modulation, synthesis and
release of growth factors and cytokines, and cell differentia-
tion [7]. The application of these forces promotes inflamma-
tory response in the periodontal tissue evidenced at the begin-
ning of bone remodeling [8] While in the compression region,
there is an increase in osteoclastic activity, in the traction re-
gion, the osteoblasts begin to proliferate and mineralize the
matrix [9]. Several cell-signaling pathways are activated,
which stimulates the turnover of the periodontal ligament
(PDL), resorption, and localized bone deposition [10]. Yet,
orthodontic forces induce numerous molecular events in the
periodontal ligament. These events include the synthesis and
release of several molecules, such as growth factors, neuro-
transmitters, and cytokines, involved in the maturation of leu-
kocytes and macrophages with pro-inflammatory property,
such as IL-1β, IL-6, IL-8, IL-12, IL-13, and TNF-α. The IL-
10 is important for its anti-inflammatory activity, and it also
participates in these processes [7, 11–13]. All these molecules
promote responses to periodontal tissue, such as cell migration
and differentiation, favoring remodeling, resorption, and bone
deposition [14–16]. Tooth movement induced by orthodontic
forces promotes changes that lead to the remodeling of tooth-
supporting tissues and the presence of different biomarkers
indicating not only cellular but also metabolic activity [7].
Cytokines, such as IL-1, IL-6, IL-8, and TNF-α, are related
to bone remodeling [17] and, also, play an important role in
the osteoclastic process [18, 19] through the activation of the
kappa B nuclear factor-TNFRS11 (RANK), ligand kappa B
nuclear factor-TNFSF11 (RANKL), and osteoprotegerin
ligand-TNFRSF11B (OPG) [20].

Interleukin-6 (IL-6) and transforming growth factor β1
(TGF-β1) are important in tooth movement, recruiting inflam-
matory cells and stimulating angiogenesis and bone remodel-
ing [7, 21]. The soluble IL-6 receptor (IL-6Rα) is suggested to
activate the differentiation of osteoclasts by inducing the ex-
pression of TNFSF11 on osteoblast surface. Thus, TNFSF11
interacts with TNFRS11 expressed in osteoclast progenitors,
immature and mature, inducing the differentiation of these
cells [22]. Osteoblasts also control the osteoclastic process,
since they synthesize TNFSF11 to promote osteoclast activa-
tion [23].

TGF-β1 is a protein that has also chemotactic effects on
osteoblasts, promoting the proliferation and differentiation of
these cells, and inhibits osteoclastic formation by reducing
RANKL and increasing OPG expression [24]. The TGF-β
superfamily comprises TGF-βs, activin, bone morphogenetic
proteins (BMPs), and other related proteins [25]. BMP and
TGF-β signaling pathways play an important role in skeletal
development and bone homeostasis. BMPs can trigger a

signaling pathway that promotes the differentiation of
osteoprogenitor cells and regulates the proliferation, differen-
tiation, maturation, and activity of osteoblasts and
chondrocytes in bone and cartilage formation. BMP-7 induces
the expression of osteoblastic differentiation markers, such as
ALP, and accelerates calcium mineralization [7, 21]. It has
been observed that BMP-2 increases the formation and vol-
ume of ectopic bone in the presence of TGF-β1 [26]. Tissue
molecular analysis collected from a femur fracture of knock-
out mice has shown that in the absence of BMP-2, the initial
repair process involving new chondrogenesis does not occur.
The authors consider that this event may possibly be involved
with a downregulation of other BMPs which demonstrates the
relevance of BMP-2 with osteogenesis [27]. The capabilities
of BMP-2 and BMP-7 have been studied in clinical trials of
craniofacial deformities and fracture healing [21].

Vascular endothelial growth factor (VEGF) plays a funda-
mental role in the remodeling of the PDL and bone formation
[28]. It is involved not only in bone angiogenesis but also in
various aspects of bone development, including chondrocyte
differentiation, osteoblast differentiation, and osteoclast re-
cruitment [29]. VEGF is shown to be increased in hypoxia
situations by the activation of the hypoxia-stimulating factor
(HIF) [30] which also induces RANKL expression in PDL
fibroblasts [31].

Accelerating the orthodontic movement has stimulated
the research of different auxiliary protocols in treatment
including the use of different therapies [32]. According to
Kim et al. [33], electrical stimulation may accelerate or-
thodontic treatment. This effect was also observed in
tooth movement submitted to the application of low-
intensity electrical current (microcurrent) in rats [34].
The photobiostimulation has also been widely used in
the healing process of different tissues and during tooth
movement [35–38]. Its action on different biological tis-
sue is vast and important for anti-inflammatory and anal-
gesic effects [39], but it was observed that the periodic
low-level laser therapy (LLLT) after corticotomy around
moved tooth periodontal tissue decreased the displace-
ment rate of the tooth and the activity of alveolar remod-
eling [40].

Although orthodontic treatments bring benefits to pa-
tients, prolonged periods of this procedure may compro-
mise the final clinical results [1]. The search for an effi-
cient treatment to shorten time in tooth movement has en-
couraged the investigation of new therapies that aid in or-
thodontic treatment. Therefore, the purpose of this study
was to evaluate the bone remodeling during orthodontic
movement with corticotomy submitted to application of
low-intensity electrical stimulation and low-level laser
therapy, applied alone and alternately. These therapies are
important in biostimulation because they are not invasive
and may also benefit this clinical procedure.
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Methodology

Animals

One hundred and fifty male Wistar rats (Rattus
norvegicus) were used, weighing 350 g on average and
120 days old. These animals were obtained from the
Animal Experimentation Herminio Ometto Foundation
(FHO/UNIARARAS). These were kept at constant tem-
perature (23 ± 2 °C) with light/dark cycle (12/12 h) and
housed in individual cages with free access to feed and
water. They were randomly divided into the following 5
groups (n = 30): (C) submitted to tooth movement; (Cort)
tooth movement/corticotomy; (Cort-L) tooth movement/
corticotomy/laser AsGaAl 808 nm (4.96J/50s); (Cort-
Mc) tooth movement/corticotomy/microcurrent (10 μA/
5 min); and (Cort-L-Mc) tooth movement/corticotomy/la-
ser/microcurrent. The animals were euthanized on the 7th,
14th, and 21st days with deepening anesthesia and cervi-
cal sprain to obtain the samples (n = 10 rats/group/exper-
imenta l per iod) . These samples were used for
histomorphometric (n = 5 rats/group/experimental period)
and molecular analyses (n = 5 rats/group/experimental pe-
riod) (Fig. 1c). The histomorphometric and molecular
analyses had as control group only the animals with
moved tooth (C) and as positive control group the animals
with moved tooth with corticotomy (Cort) [41], since the
objective of this study was focused mainly on the thera-
pies used. The procedures were carried out according to
experimental standards and biodiversity rights [42] and
approved by CEUA/UNIARARAS (020/2015).

Corticotomy and orthodontic movement

After intraperitoneal administration of xylazine hydrochlo-
ride (10 mg/kg) and ketamine hydrochloride (30 mg/kg),
corticotomy was performed. After an incision in the mesial
of the first left maxillary molar (3.0 mm in length), the
gingival tissue divulsion was performed to access the bone
tissue. For corticotomy, a truncated conical dental drill
(1801 HL) was used in low rotation with saline solution
irrigation, performing a cortical osteotomy with a semi-
circular shape, in the mesial of the moved tooth [43].
After suturing, analgesia with tramadol (1 mg/kg) and so-
dium dipyrone (10 mg/kg) was added in the water for 72 h.
The orthodontic device [34] was installed immediately af-
ter the corticotomy procedure (Fig. 1a).

A stainless steel closed coil spring was installed between
the left upper first molar (force site) and the upper incisors
(anchorage site), which permitted a tip forward movement of
the first molar. The coil spring was stretched from 4 to 6 mm,
releasing a 0.4 N initial force [34].

Microcurrent application

In the treatment with micro-galvanic current (10 μA/5 min), a
transcutaneous electrical stimulator (Physiotonus
Microcurrent, BIOSET®, Rio Claro, SP, Brazil) was used
[34]. The applications were performed with the help of 2 elec-
trodes (1.0 mm in diameter), placed in the mesial region of the
first molar, in two points (vestibular and palatal), under anes-
thesia and twice a week (Fig. 1b).

Laser application

The low-level laser therapy (LLLT) applications were per-
formed using Photon Lase III® stimulator (DMC
Equipamentos LTDA, São Carlos, SP, Brazil) positioned se-
quentially in the palatal and vestibular regions of the first
molar by the standardized time and twice a week.

The laser used was AsGaAl, 808 nm, continuous mode,
100 mW output power, beam area 0.0275cm2, energy den-
sity 90.18J/cm2, applied for 25 s in two points (palatal and
vestibular regions), which received 2.48J/cm2 each, gener-
ating total energy of 4.96J/cm2. Punctual irradiation was
performed at a distance of ± 2 mm and at 90° to the surface
of the moved tooth mucosa, placed in the mesial region of
the first molar, in two points (vestibular and palatal), under
anesthesia and twice a week. The animals from the Cort-L-
Mc group received alternating applications, on different
days, of laser or microcurrent, twice a week each one
(Fig. 1b). Figure 1c shows the development of the experi-
mental protocol with the treatments and analysis carried
out.

Measurement of tooth displacement

Clinical analysis (n = 10 rats/group/experimental period) mea-
sured the distance between the distal face of the 3rd molar and
the mesial face of the maxillary 1st molar. A digital caliper
was used (Starret, Massachusetts, USA) with a definition of
0.01 mm. In the analysis of tooth displacement, the contralat-
eral side of the same animal was used as a reference only for
the amount of tooth displacement on the moved side. The
amount of movement was calculated by obtaining the differ-
ence between the moved side and the contralateral side. The
quantification of root resorption was performed on the 21st
day of movement. In the cross-sections, the percentage of root
resorption was calculated by dividing the resorption area by
the total root area [44].

Histomorphometric analysis

The maxillaes were fixed in 10% buffered formaldehyde so-
lution for 48 h, decalcified in Morse solution, and embedded
in Paraplast™ (Histosec®, Merck). Transversal sections
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(4.0 μm thick) at the cervical level of the molars were pre-
pared to analyze the mesiobuccal and distobuccal roots. To
determine the number of fibroblasts, osteoclasts, and blood
vessels, toluidine blue staining was used. The inflammatory
infiltrate was determined using the eosin–orange–toluidine
blue staining according to Dominici [45]. In both cases, mi-
croscopic analysis was done at 400× magnification. The orga-
nization and maturation of birefringent collagen fibers
(expressed as % of area) were evaluated using the
picosirius–hematoxylin technique in bright field and polarized
light [34] using a Leica® DM2000 microscope at 100× mag-
nification. In each animal, five sections were obtained, where
from three images were captured (n = 15 images/animal).
Counts are reported as number of cells per square micrometer
(μm2).

Immunohistochemical analysis

For immunohistochemical staining, 4.0 μm sections were ar-
ranged on previously silanized slides. The samples (n = 5/ex-
perimental periods) were incubated with the following prima-
ry antibodies: anti-OPG (sc-390518, 1:200), anti-RANK (sc-
374360, 1:50), and anti-RANKL (sc-377079, 1:200) (Santa
Cruz Biotechnology, Dallas, USA). Detection reaction was
based in DAB molecule (Novolink™ Max Polymer
Detection System (1250 Tests)—RE7280-K, Leica
Biosystems Newcastle Ltd, UK) according to the manufac-
turer’s instructions.

The counting of positive cell number for RANK, RANKL,
and OPG was performed inside of PDL from the captured
images in 400× of magnification using the Sigma Scan

Fig. 1 a Methodology of corticotomy surgery and installation of
orthodontic device, immediately after corticotomy procedure (first
yellow arrow, bone tissue accessed after gingival tissue divulsion;
second yellow arrow, cortical osteotomy with semi-circular shape in the
mesial of the moved tooth; third yellow arrow, suture in the mesial of the

moved tooth; fourth yellow arrow, orthodontic device installed). b
Treatment with low-level laser therapy (LLLT) and microcurrent. c
Timeline of follow-up (surgery, treatments, euthanasia, sample harvest-
ing, experimental analysis)
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Pro™ 5.0 software for cell counter. From each animal, five
sections were obtained, of which three images were captured
(n = 15 images/animal).

Extraction and quantification of bone and gingival
tissue proteins

The alveolar bone in the region of the left upper first molar
moved in the different groups was curetted, and the samples
were homogenized with Politron (PTA 20S model PT 10/35;
Brinkmann Instruments, Westbury, NY, USA). The samples
were treated with buffer for Western blotting (100 mM Tris
base, #93362, Sigma-Aldrich Inc., pH 7.5, 10 mM EDTA,
Triton 10%, 100 mM sodium fluoride, 10 mM sodium pyro-
phosphate, 10 mM sodium orthovanadate). For ELISA, the
gingival tissue in the region of the left upper first molar moved
in the different groups was cut and the samples were homog-
enized manually. Samples were treated with protein extraction
reagent for ELISA (T-PER®-Tissue Protein Extraction
Reagent/Thermo Scientific cat. 78510) [46].

The supernatant was collected for the determination of
samples’ total protein concentration by the Biureto method
(RB09695SO—Êxodo Científica, SP, Brazil) and read by
spectrophotometry at 540 nm.

Western blotting

The samples were incubated (1:4) at 100 °C for 5 min in
Laemmli buffer (0.1% bromophenol blue, 1 M sodium phos-
pha te pH 7.0 , 50% glycero l , 10% SDS, 5% β -
mercaptoethanol, 200 mM DTT). For polyacrylamide gel
electrophoresis (PAGE), a volume corresponds to 50 μg of
protein in biphasic gel: stacking gel (acrylamide 4.5%) and
resolving gel (acrylamide 12%) [34]. The race was performed
at 90 V for approximately 2 h with running buffer (200 mM
base Trism, 1.52M glycine, 7.18mMEDTA, and 0.4% SDS),
diluted 1:4. The samples were transferred to PVDF mem-
branes (Immun-Blot®-BioRad) for 2 h at 120 Vat lower room
temperature, on wet-blotting with Transfer Buffer (25 mM
base Trism, 192 mM glycine). After the transfer, the mem-
branes were blocked with bovine albumin (#A4503, quality
level premium; Sigma-Aldrich Inc.) 5% in basal solution
(0.01 M Tris base, 0.15 M NaCl, 0.05% Tween 20) for 1 h
and 30 min at room temperature. Then, the membranes were
washed three times for 10 min with basal solution and incu-
bated overnight under shaking at 4 °C with basal solutions
plus 3% serum bovine albumin containing the following pri-
mary antibodies: TGF-β1 (sc-52893, 1:500, 25 kDa, mouse
monoclonal, Santa Cruz Biotechnology); VEGF (sc-53462,
1:1000, 42 kDa, mouse monoclonal , Santa Cruz
Biotechnology); BMP-7 (sc-9305, 1:500, 55 kDa, goat poly-
clonal, Santa Cruz Biotechnology); collagen type I (sc-8788,
1:500, 132 kDa, goat polyclonal, Santa Cruz Biotechnology);

collagen type III (C7805, 1:5000, 70 kDa, mouse monoclonal,
Sigma-Aldrich Inc.); and GAPDH (ab8245, 1:500, 36 kDa,
mouse monoclonal, Abcam). Subsequently, the membranes
were washed three times for 10 min with basal solution and,
then, incubated under agitation for 2 h in a solution containing
the following secondary antibodies: rabbit anti-goat IgG-HRP
(sc-2768, 1:5000, Santa Cruz Biotechnology) and mouse
IgGκ BP-HRP (sc -516102 , 1 :5000 , San ta Cruz
Biotechnology). Membranes were washed with basal solution
and incubated for 2 min with Thermo Scientific® chemilumi-
nescent reagent (#34080) and exposed to the Singene
photodocumentator (G: BOX) for documentation. The inten-
sity of the bands was evaluated by densitometry (five times)
by the ImageJ program (NIH, USA).

Enzyme-linked immunosorbent assay

The concentration of IL-6 (rat IL-6 ELISA Set, cat. 550319/
BD Bioscience) was analyzed by ELISA using monoclonal
antibodies to each rat cytokine. A volume corresponding to
30 μg of proteins from each sample was added to the immu-
noassay plate for IL-6 level determination, according to the
manufacturer’s instructions (BDBiosciences). Reactions were
made in triplicate for each sample. The absorbance was mea-
sured at 450 nm on a microplate reader (BioTec, ELx800/
USA), and the concentrations of each cytokine were deter-
mined on the basis of the linear regression line made for the
standard curve obtained as the appropriate recombinant cyto-
kine standard.

Statistical analysis

The data were demonstrated in mean and ±standard error of
the mean. All data passed the Kolmogorov–Smirnov normal-
ity test and fit the normality curve. The ANOVA two-way was
used, and Bonferroni’s post-test was performed in GraphPad
Prism 5.0, comparing all groups within each segment time,
with a pre-established significance level of 5%.

Results

Tooth displacement and root resorption

The results of root resorption are observed and demonstrated
only on the 21st day, which corresponds to the last experimen-
tal analyzed period (Fig. 2a). No differences were observed in
the percentage of root resorption between the experimental
groups (p > 0.05). Especially in the microcurrent (Cort-Mc,
Cort-L-Mc), the tooth displacement increased on the 21st day
in relation to C (p = 0.0007, p < 0.0001, respectively) and
Cort-L-Mc in relation to Cort-L (p = 0.0152) (Fig. 2b).
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Inflammatory process

The inflammatory infiltrate increased on the 7th day in all
experimental groups in relation to group C (p < 0.0001),
and, in the Cort-L-Mc group, an increase was also observed
in relation to the Cort-L group (p = 0.0004). On the 14th day, a
decrease was observed in the Cort-Mc group in relation to the
Cort group (p = 0.0008) and in Cort-L-Mc group in relation to
C, Cort (p < 0.0001), and Cort-L (p < 0.0057) groups. It was
observed that on the 21st day, groups that received laser or
microcurrent treatment had the inflammatory infiltrate

decreased in relation to C and Cort groups (p < 0.0001),
whereas the Cort-L-Mc group was also lower than the Cort-
Mc group (p < 0.0031) (Fig. 3a).

As for TGF-β1, it was lower on the 21st day in groups
treated with laser and microcurrent in relation to C and Cort
groups (p < 0.0195) (Fig. 3b).

Angiogenesis

Data analysis showed an increase in the number of vessels in
Cort-L (p < 0.0001), Cort-Mc (p = 0.0002), and Cort-L-Mc

Fig. 2 a Root resorption on the 21st with histological analysis. Red
arrow, direction of force. b Measurement of the tooth displacement
(mm) and mesial displacement of the 1st molar in orthodontic movement
of rats. Groups: C, tooth movement; Cort, tooth movement and
corticotomy; Cort-L, tooth movement/corticotomy/laser; Cort-Mc, tooth
movement/corticotomy/microcurrent; Cort-L-Mc, tooth movement/

corticotomy/laser/microcurrent. Samples were analyzed on the 7th,
14th, and 21st days after orthodontic movement. The values were com-
pared using ANOVA two-way and Bonferroni’s post-test. Results
expressed as mean ± standard error of the mean. a, p < 0.05 relative to
C; b, p < 0.05 in relation to the Cort; c, p < 0.05 compared to the Cort-L;
d, p < 0.05 compared to the Cort-Mc
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(p < 0.0001) on the 14th day in relation to the C group. On the
21st day, the groups Cort-Mc (p = 0.0013) and Cort-L-Mc
(p = 0.0025) were higher than C (Fig. 4a).

The expression of VEGF was increased on the 7th day
in the Cort-Mc and Cort-L-Mc groups and decreased on the
14th day in relation to group C (p < 0.0001). Analysis of
the 21st day showed a decrease of VEGF in samples from
the groups treated with laser and microcurrent applied
alone and on alternate days in relation to C and Cort groups
(p < 0.0001) (Fig. 4b).

Fibroplasia and collagen

The quantification of fibroblasts on the 7th day increased in
the group Cort-Mc in relation to groups C, Cort (p < 0.0001),
and Cort-L (p = 0.0067), whereas in the group Cort-L-Mc it
increased in relation to the other groups (p < 0.0001). On the
14th day, the groups Cort-L, Cort-Mc, and Cort-L-Mc in-
creased in relation to groups C and Cort (p < 0.0001). On the
21st day, the groups treated with microcurrent (Cort-Mc, Cort-
L-Mc) also increased in relation to the C, Cort, and Cort-L
groups (p < 0.0001) (Fig. 5a).

The evaluation of birefringent collagen fibers showed
an increase in all groups in relation to C in all experimental
periods. On the 7th day, the results of groups Cort-L, Cort-
Mc, and Cort-L-Mc were higher than those of Cort and the
Cort-L-Mc, also in relat ion to the Cort-L group

(p < 0.0001). On the 14th day, Cort-L, Cort-Mc, and
Cort-L-Mc were increased in relation to the groups C
(p < 0.0001) and Cort (p < 0.0004). The groups Cort-Mc
and Cort-L-Mc also increased in relation to the groups
Cort and Cort-L (p < 0.0004). On the 21st day, the Cort-
Mc and Cort-L-Mc groups were higher than Cort and Cort-
L groups (p < 0.0001) and, also, the Cort-L-Mc group in
relation to the Cort-Mc group (p < 0.0002) (Fig. 5b).

The expression of collagen III showed a gradual decrease
from days 14th to 21st in all groups and had no difference
between groups on each day of follow up (Fig. 5c). Whereas
collagen I was increased on the 21st day in the Cort-L (p =
0.0086), Cort-Mc (p = 0.0054), and Cort-L-Mc (p = 0.0079)
groups in relation to Cort (Fig. 5d).

Osteogenesis

The number of RANK-positive stained cells increased in the
groups treated especially with microcurrent in all experimen-
tal periods in relation to C, Cort, and Cort-L groups
(p < 0.0010) (Fig. 6a). Regarding RANKL, only the Cort-
Mc group showed a reduction in relation to C on the 7th day
(p = 0.0011) (Fig. 6b). In positive-stained cells of OPG, no
differences were observed between the experimental groups
(p > 0.05) (Fig. 6c). Figure 6d demonstrates the immunohis-
tochemistry of these markers.

Fig. 3 a Inflammatory infiltrate
quantification (n/104 μm2) by
histomorphometry analysis and b
expression of TGF-β1 in the
periodontal ligament in rat ortho-
dontic movement. Groups: C,
tooth movement; Cort, tooth
movement and corticotomy; Cort-
L, tooth movement/corticotomy/
laser; Cort-Mc, tooth movement/
corticotomy/microcurrent; Cort-
L-Mc, tooth movement/
corticotomy/laser/microcurrent.
Samples were analyzed on the
7th, 14th, and 21st days after or-
thodontic movement. The values
were compared using ANOVA
two-way and Bonferroni’s post-
test. Results expressed as mean ±
standard error of the mean. a,
p < 0.05 relative to C; b, p < 0.05
in relation to the Cort; c, p < 0.05
compared to the Cort-L; d,
p < 0.05 compared to the Cort-Mc
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The quantification of osteoclasts showed an increase on
the 21st day in groups treated with microcurrent in relation
to C (p < 0.0012) (Fig. 7a). The increase in BMP-7 protein

expression on the 21st day in the Cort-Mc and Cort-L-Mc
groups was evidenced in relation to the other groups
(p < 0.0130) (Fig. 7b). The quantification of IL-6 showed

Fig. 4 a Blood vessel
quantification (n/104 μm2) by
histomorphometry analysis and b
of VEGF expression in the
periodontal ligament in rat
orthodontic movement. Groups:
C, tooth movement; Cort, tooth
movement and corticotomy; Cort-
L, tooth movement/corticotomy/
laser; Cort-Mc, tooth movement/
corticotomy/microcurrent; Cort-
L-Mc, tooth movement/
corticotomy/laser/microcurrent.
Samples were analyzed on the
7th, 14th, and 21st days after
orthodontic movement. The
values were compared using
ANOVA two-way and
Bonferroni’s post-test. Results
expressed as mean ± standard er-
ror of the mean. a, p < 0.05 rela-
tive to C; b, p < 0.05 in relation to
the Cort; c, p < 0.05 compared to
the Cort-L; d, p < 0.05 compared
to the Cort-Mc

Fig. 5 a Fibroblast quantification (n/104 μm2) by histomorphometry
analysis and b birefringent collagen fibers (% area) and expression of c
collagen III and d collagen I in the periodontal ligament in rat orthodontic
movement. Groups: C, tooth movement; Cort, tooth movement and
corticotomy; Cort-L, tooth movement/corticotomy/laser; Cort-Mc, tooth
movement/corticotomy/microcurrent; Cort-L-Mc, tooth movement/

corticotomy/laser/microcurrent. Samples were analyzed on the 7th,
14th, and 21st days after orthodontic movement. The values were
compared using ANOVA two-way and Bonferroni’s post-test. Results
expressed as mean ± standard error of the mean. a, p < 0.05 relative to
C; b, p < 0.05 in relation to the Cort; c, p < 0.05 compared to the Cort-L;
d, p < 0.05 compared to the Cort-Mc
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an increase of this cytokine in all experimental periods es-
pecially in the groups treated with microcurrent (Cort-Mc,
Cort-L-Mc) in all periods in relation to the other groups
(p < 0.0001) (Fig. 7c).

Discussion

Corticotomy surgery alters bone biology by promoting accel-
eration in tooth movement mediated by the periodontal liga-
ment [47]. The modulation of the inflammatory process is of
extreme importance in the phases of tooth movement proce-
dure associated with corticotomy surgery, and it involves the
release of a complex cascade of pro-inflammatory signals and
growth factors that recruit inflammatory cells and promote
angiogenesis [48]. Growth factors and proinflammatory cyto-
kines are released during inflammation by periodontal liga-
ment cells during orthodontic movement [16].

It was observed that the low-level laser therapy (LLLT) did
not promote positive tooth displacement results in relation to
the electrical current. These data correlate with the results
found by Kim et al. [40] who used low-level laser therapy
(LLLT) and corticotomy therapies in orthodontic movement
in an animal model. These authors observed decreased tooth
displacement when they combined the two techniques and
concluded that this procedure impaired orthodontic move-
ment. Our results demonstrated that the laser was more effec-
tive in modulating the angiogenic and inflammatory process-
es. On the other hand, we observed that the combination of
corticotomy with microcurrent favored tooth displacement,
even when alternated to the laser.

The application of electrical current was experimentally
tested in animal models and promoted acceleration in tooth
movement, as it generates piezoelectric energy and increases
the velocity of tooth movement [49]. Although corticotomy
surgery is invasive, this technique has numerous benefits in
orthodontic treatment, and studies with therapies that improve

Fig. 6 Quantification of positive stained cells for a RANK, b RANKL, c
OPG, and d immunohistochemistry in the periodontal ligament and
alveolar bone of rats. Groups: C, tooth movement; Cort, tooth
movement and corticotomy; Cort-L, tooth movement/corticotomy/laser;
Cort-Mc, tooth movement/corticotomy/microcurrent; Cort-L-Mc, tooth
movement/corticotomy/laser/microcurrent. Samples were analyzed on

the 7th, 14th, and 21st days after orthodontic movement. The values
were compared using ANOVA two-way and Bonferroni’s post-test.
Results expressed as mean ± standard error of the mean. a, p < 0.05 rela-
tive to C; b, p < 0.05 in relation to the Cort; c, p < 0.05 compared to the
Cort-L; d, p < 0.05 compared to the Cort-Mc
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the clinical performance of this procedure or minimize its
adverse effects are of great importance in orthodontic practice
[5].

On the other hand, accelerating the rate of tooth movement
can reduce the duration of orthodontic treatment and be asso-
ciated with unwanted effects, including root resorption. Non-
surgical techniques that assist in this process have been inves-
tigated; these include low-intensity laser irradiation, resonance
vibration, pulsed electromagnetic fields, electrical currents,
and pharmacological approaches [50]. Clinical research on
the efficacy of non-surgical interventions to accelerate ortho-
dontic treatment is scarce, with inconclusive results. In light of

the critical review by El-Angbawi et al. [50], there is a need for
well-established protocols, statistical methods, and random-
ized clinical trials to determine whether adjunctive therapies
can clinically reduce the duration of orthodontic treatment and
contribute to accelerate tooth movement without adverse ef-
fects. Despite the controversial data presented in the literature
[50], in our study, we observed that the use of electrical current
as an auxiliary therapy in orthodontic treatment with
corticotomy has contributed to tooth movement as demon-
strated by the results.

During orthodontic movement, changes occur in levels of
RANK, RANKL, and OPG in tooth-supporting tissues, where

Fig. 7 a Quantification of
osteoclast number (n/104 μm2) by
histomorphometry analysis, b
expression of BMP-7, and c
quantification of IL-6 by ELISA
in the periodontal ligament and
alveolar bone in orthodontic
movement of rats. Groups: C,
tooth movement; Cort, tooth
movement and corticotomy; Cort-
L, tooth movement/corticotomy/
laser; Cort-Mc, tooth movement/
corticotomy/microcurrent; Cort-
L-Mc, tooth movement/
corticotomy/laser/microcurrent.
Samples were analyzed on the
7th, 14th, and 21st days after or-
thodontic movement. The values
were compared using ANOVA
two-way and Bonferroni’s post-
test. Results expressed as mean ±
standard error of the mean. a,
p < 0.05 relative to C; b, p < 0.05
in relation to the Cort; c, p < 0.05
compared to the Cort-L; d,
p < 0.05 compared to the Cort-Mc
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RANKL stimulation and OPG inhibition are involved in os-
teoclastogenesis [51]. It has been shown that increases in
RANKL and decreases in OPG can be observed during severe
orthodontic root resorption [52]. In our study, even though the
use of microcurrent therapy accelerated tooth movement, all
groups presented some root resorption. We also did not ob-
serve an increase in RANKL levels, which implies a predicted
root resorption of orthodontic movement associated with
corticotomy [51]. Experimental studies did not observe root
resorption in orthodontic treatment with or without
corticotomy [53, 54]. Our results are supported by Hassan
et al. [55] considering that some root resorption is usually
expected during orthodontic movement.

Laser therapy has demonstrated biomodulatory results be-
cause of its effects on the inflammatory cell decrease and in
the improvement of neovascularization [56]. Some in vitro
studies have also demonstrated the biostimulatory effects of
laser therapy on the release of cytokines and growth factors in
the proliferation process of different cells and reduction of
inflammatory cells [57, 58]. These data correlate with the
results found in our study where low-level laser therapy
(LLLT) and microcurrent applied alone and alternated pro-
moted a decrease of inflammatory infiltrate and the protein
expression of TGF-β1 in the last experimental period, sug-
gesting that these treatments were effective in reducing the
inflammatory process. The stimulation of inflammatory cyto-
kine expression increases bone remodeling, favoring ortho-
dontic tooth movement [59]. The TGF-β1, a growth factor
modulator of the inflammatory process and its isoforms, reg-
ulates extracellular matrix synthesis, growth, proliferation,
and cell death [60]. In addition, it plays a crucial role in the
regeneration of connective tissue and bone remodeling with
significant effects on osteogenic differentiation and bone for-
mation, recruiting leukocytes and inducing the inflammatory
phase [61]. Osteoblasts can produce TGF-β1, maintaining the
balance between dynamic processes of resorption and bone
formation [62]. This growth factor also influences the
RANKL/OPG system on osteoblasts [24].

Orthodontic forces promote cellular responses in the
PDL, which induce bone resorption on the pressure side
and bone deposition on the traction side. This process in-
volves the induction of osteoclasts through the RANK/
RANKL pathway and several inflammatory cytokines
[63]. The RANKL/OPG binding favorably modulates os-
teoclastogenesis and is considered an important factor in
the control of bone resorption [64]. The stimulation of the
PDL also increases the speed of bone remodeling and sev-
eral therapies that are used for this purpose. Among these,
the laser and electrical currents have been shown to be
promising in orthodontic therapy [34, 65]. In our study,
the analysis of the markers indicated that the application
of isolated microcurrent when alternated to the laser in-
creased the osteoclastic activity. The increase of IL-6,

especially in the groups treated with microcurrent, unto
the last period may be related to its role in osteoclastogen-
esis. IL-6 influences both osteoblast and osteoclast differ-
entiation and its activities through a variety of mechanisms
during bone remodeling [66]. Effects of IL-6 on bone for-
mation are determined by the concentrations and combina-
tions of this cytokine with its IL-6Rα receptors present on
osteoblasts inducing their differentiation and, thus, osteo-
clast activity [22]. PGE2, IL-6, and other inflammatory
cytokines may also facilitate osteoclastic reabsorption pro-
cesses [17], regulating immune responses in inflammation
sites, and with also an autocrine/paracrine activity that
stimulates osteoclast formation and the bone-resorbing ac-
tivity of preformed osteoclasts [67]. In our study, the IL-6
activation did not indicate expressive bone resorption since
RANKL and OPG levels were balanced during all experi-
mental times suggesting a modulation of the osteogenic
process, since the increased RANKL promotes bone
resorption.

Orthodontic tooth movement and corticotomy can improve
bone remodeling, increasing RANK and VEGF expression,
with decreased OPG. Bone resorption by osteoclasts and bone
formation by osteoblasts are quite obvious around newly
formed blood vessels, possibly due to increased VEGF ex-
pression [66, 68]. Thus, the increase in RANK and osteoclasts
observed in our study may be related to an increase in VEGF
in the initial periods and a decrease in the inflammatory pro-
cess in the final periods as a consequence from therapies used.
Although greater expression of RANK was observed in the
groups treated with microcurrent in all periods, osteoclast was
more evident in the last studied period probably by the pres-
ence of mature osteoclasts.

RANKL protein was found to be predominant in inflam-
matory cells adjacent to areas of pathological bone loss in
periodontal disease [69, 70]. In our study, laser therapy was
shown to be effective in decreasing the inflammatory process
and RANKL, possibly leading to moderate osteoclast with a
consequent decrease in OPG expression. It is important to
note that the observations of our study correspond to a three-
week period where corticotomywas used. A previous study of
our research group about bone regeneration showed an in-
crease of OPG from the 30th experimental day [71].

Angiogenesis is fundamental for osteogenesis, and the re-
lationship between these two processes has been called angio-
genic–osteogenic coupling [72]. The analysis of our results
showed that there was an increase in the number of vessels
in the groups that were treated with laser and microcurrent
applied alone or on alternate days. Different studies have dem-
onstrated the beneficial effects of microcurrent on angiogenic
stimulation [73], including orthodontic movement [34]. The
development of the vascular network plays a vital role in the
osteogenesis process [74]. Spadari et al. [34], using the same
intensity and time of electrical stimulation (10 μA/5 min), also
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observed an increase in the number of newly formed vessels
during orthodontic movement.

An important modulator of angiogenesis is VEGF
which is involved in vascular permeability [75], bone for-
mation, including osteoblast differentiation, osteoclast re-
cruitment, and the repair of periodontal ligament injuries
during orthodontic movement [61]. This growth factor is
increased in the hypoxia situation through the activation of
the hypoxia induction factor (HIF) [30]. Our results dem-
onstrated the expression of VEGF decreased in the last
experimental periods mainly in the groups that received
the therapy with microcurrent and when alternated to the
laser. This result is related to the increase in the number of
vessels in the same groups, suggesting the importance of
these therapies in angiogenesis.

The increase of BMP-7 in the last period evidenced the
inductive effect of the microcurrent in the osteogenesis, since
the application of the laser separately did not promote an in-
crease in the expression of this protein. BMP-7 also induces
the expression of osteoblastic differentiation markers, acceler-
ates calcium deposition, and has osteoinductive potential [76].

For orthodontic treatment success, participation of cells
involved in the reorganization and maturation of collagen is,
also, important. It was observed that the microcurrent was
highlighted by its effects on fibroplasia and the reorganization
of collagen. The application of electrical current regulates the
secretion of fibroblast growth factor and modulates wound
healing [77]. All groups that received different treatments,
especially those that received microcurrent application alone
or alternated with laser, demonstrated a better reorganization
of collagen, since the analysis of the collagen isoforms indi-
cated a growing maturation of these fibers. This was demon-
strated by the increase in the expression of type I collagen in
the last period in the groups treated with microcurrent and
laser. On the other hand, the expression of type III collagen
gradually decreased in all groups at the same experimental
time. Collagen I and III evaluation has been an important
indicator in the repair progress where the synthesis of collagen
type III being gradually replaced by collagen type I, an essen-
tial process in bone remodeling, can be observed. Collagen
type I fibers are presented in a high number in the periodontal
ligament, and the turnover of these fibers is necessary for bone
remodeling in tooth movement [78].

Conclusion

Laser therapy promoted anti-inflammatory and angiogenic ef-
fects while the electrical stimulation was more effective in
angiogenesis, osteogenesis, and, also, collagen fiber organiza-
tion in this experimental model. The complements of biolog-
ical effects on these two therapies when applied alternately,
thus improving orthodontic treatment with corticotomy and

favoring bone remodeling and tooth displacement, can be ob-
served. However, although electrical current therapy promot-
ed more evident orthodontic movement, it presented a similar
expected root resorption to all experimental treatments.
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